Prediction of Stock Market Index Movement by Ten Data Mining Techniques

نویسندگان

  • Phichhang Ou
  • Hengshan Wang
چکیده

Ability to predict direction of stock/index price accurately is crucial for market dealers or investors to maximize their profits. Data mining techniques have been successfully shown to generate high forecasting accuracy of stock price movement. Nowadays, in stead of a single method, traders need to use various forecasting techniques to gain multiple signals and more information about the future of the markets. In this paper, ten different techniques of data mining are discussed and applied to predict price movement of Hang Seng index of Hong Kong stock market. The approaches include Linear discriminant analysis (LDA), Quadratic discriminant analysis (QDA), K-nearest neighbor classification, Naïve Bayes based on kernel estimation, Logit model, Tree based classification, neural network, Bayesian classification with Gaussian process, Support vector machine (SVM) and Least squares support vector machine (LS-SVM). Experimental results show that the SVM and LS-SVM generate superior predictive performances among the other models. Specifically, SVM is better than LS-SVM for in-sample prediction but LS-SVM is, in turn, better than the SVM for the out-of-sample forecasts in term of hit rate and error rate criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods

This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...

متن کامل

Stock Prediction and Automated Trading System

Stock market decision making is a very challenging and difficult task of financial data prediction. Prediction about stock market with high accuracy movement yield profit for investors of the stocks. Because of the complexity of stock market financial data, development of efficient models for prediction decision is very difficult, and it must be accurate. This study attempted to develop models ...

متن کامل

A Survey of Stock Price Prediction & Estimation Using Data Mining Techniques

The application of AI techniques for stock price prediction leads to voluminous growth of wealth of investors with the advent of technology. Several prediction and estimations are coming up for almost all sectors of the market. Particularly any kind of stock price prediction is not at all possible without excessive data manipulation which can be done effectively only thru data mining. The syste...

متن کامل

Designing a smart algorithm for determining stock exchange signals by data mining

One of the most important problems in modern finance is finding efficient ways to summarize and visualize the stock exchange market. This research proposes a smart algorithm by means of valuable big data that is generated by stock exchange market and different kinds of methodology to present a smart model.In this paper, we investigate relationships between the data and access to their lat...

متن کامل

Market Index and Stock Price Direction Prediction using Machine Learning Techniques: An empirical study on the KOSPI and HSI

The prediction of a stock market direction may serve as an early recommendation system for short-term investors and as an early financial distress warning system for long-term shareholders. In this paper, we propose an empirical study on the Korean and Hong Kong stock market with an integrated machine learning framework that employs Principal Component Analysis (PCA) and Support Vector Machine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009